Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

نویسندگان

  • Anusit Ampaiboon
  • On-Uma Lasunon
  • Bopit Bubphachot
چکیده

We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction and Optimization of Mechanical Properties of St52 in Gas Metal Arc Weld Using Response Surface Methodology and ANOVA

Many researchers have developed algorithms to predict welding parameters. The variety of welding types is broad because the confine mixture of pressure and temperature could be selected. This paper introduces a response surface methodology (RSM) for optimization and prediction of the influence of Ar and CO2 gases and electrical current on tensile strength of St52’s gas metal arc weld (GMAW) lin...

متن کامل

Optimization of gas metal arcwelding parameters of SS304 austenitic steel by Taguchi –Grey relational analysis

This study investigated the optimization of three welding parameters (wire feed speed, arc voltage, and shielding gas flow rate) for SS 304H by using Taguchi based Grey relational analysis. In this research work, pure argon was used as shielding gas. Numbers of trials were performed as per L16 (4xx3) orthogonal array design and the mechanical quality such ultimate tensile strength, microhardnes...

متن کامل

Effect of Heat Input on Microstructural and Mechanical Properties of AISI 304 Welded Joint Via MIG Welding

In this experimental work, AISI 304 was welded via metal inert gas (MIG) welding process with Argon (Ar) as shielding gas. In the present study, AISI 304 was subjected to different heat input using a standard 308L electrode. Weld quality i.e. ultimate tensile strength, toughness, microhardness, and microstructure of AISI 304 were examined. Microstructures of welded joints were studied using sca...

متن کامل

Effect of friction stir welding parameters on the ultimate tensile strength of Al-Cu tailor welded blanks

In the present study, parameters of tool rotation speed, tool travel speed and tool offsetting with different levels were used in the friction stir welding (FSW) of aluminum-copper tailor welded blanks (TWBs). The FSW of pure copper to 5052 aluminum alloy were carried out by varying tool rotation speed from 800 rpm to 1200 rpm, tool travel speed from 40 mm/min to 80 mm/min and tool offsetting f...

متن کامل

Prediction of Weld Strength in Resistance Spot Welded Samples by Adaptive Neuro-Fuzzy Inference System (ANFIS)

Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015